Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images
نویسندگان
چکیده
An effective automated pulmonary nodule detection system can assist radiologists in detecting lung abnormalities at an early stage. In this paper, we propose a novel pulmonary nodule detection system based on a genetic programming (GP)-based classifier. The proposed system consists of three steps. In the first step, the lung volume is segmented using thresholding and 3D-connected component labeling. In the second step, optimal multiple thresholding and rulebased pruning are applied to detect and segment nodule candidates. In this step, a set of features is extracted from the detected nodule candidates, and essential 3D and 2D features are subsequently selected. In the final step, a GP-based classifier (GPC) is trained and used to classify nodules and non-nodules. GP is suitable for detecting nodules because it is a flexible and powerful technique; as such, the GPC can optimally combine the selected features, mathematical functions, and random constants. Performance of the proposed system is then evaluated using the Lung Image Database Consortium (LIDC) database. As a result, it was found that the proposed method could significantly reduce the number of false positives in the nodule candidates, ultimately achieving a 94.1% sensitivity at 5.45 false positives per scan.
منابع مشابه
Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy
Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...
متن کاملطراحی سیستم کمک تشخیص کامپیوتری نوین به منظور شناسایی ندولهای ریوی در تصاویر سیتی اسکن
Background: Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest comp...
متن کاملA New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients
Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملAutomated Pulmonary Nodule Detection System in Computed Tomography Images: A Hierarchical Block Classification Approach
A computer-aided detection (CAD) system is helpful for radiologists to detect pulmonary nodules at an early stage. In this paper, we propose a novel pulmonary nodule detection method based on hierarchical block classification. The proposed CAD system consists of three steps. In the first step, input computed tomography images are split into threedimensional block images, and we apply entropy an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 212 شماره
صفحات -
تاریخ انتشار 2012